Impact and Adaptation Assessment of Cyclone Damage Risks Due to Climate Change

Mark Stewart
Professor of Civil Engineering
Director, Centre for Infrastructure Performance and Reliability
The University of Newcastle
Australia

NCCARF Symposium, Brisbane, 22-23 July 2009
Scope of Talk

- Probabilistic Risk Assessment for Infrastructure Protection
- Climate impact and adaptation strategies for cyclone damage
 - Proof of concept work
 - housing vulnerability in North Queensland
 - scenario based
 - Assess damage risks (losses)
 - Assess costs and benefits of adaptation strategies
 - should we ‘do something’ or ‘do nothing’?
 - is an adaptation cost effective? and when?
- Other research @ The University of Newcastle
 - Centre for Climate Impacts Management (C²IM)
Many climate adaptation options
- differing cost
- differing effectiveness
- mitigate different hazards

Need to make decisions about how best to utilise finite resources to maximise risk reduction and benefits

Decision support criteria
- risk assessment and risk acceptability
 - Risk = expected losses = Probability of Occurrence x Consequences
 - e.g. damage / year
- net benefit = benefits - costs

Consistent with Australian & International Standards
eg. AS/NZS 4360-2004 Risk Management
Probabilistic Risk Assessment for Infrastructure Protection

- Climate Impact and Adaptation Risks:
 - climate scenarios ?
 - impact / consequences ?
 - vulnerability ?
 - effectiveness of adaptation measures ?
 - cost of adaptation measures ?

- Spatial and time-dependent processes (complex!)

- Large uncertainties in information
 - probabilistic and reliability modelling
 - risk-based decision support
Climate Impact on Cyclone Damage Risks
(Li and Stewart 2008)

- Probabilistic wind field model
 - peak gust wind speeds
 - extreme value distribution

- Building vulnerability functions
 - pre-1980 + post-1980 construction
 - 125,000 houses in region
 - + 2,500 new houses pa
 - insured value of a house = $320,000

- Event-based simulation methods
Climate Impact on Cyclone Damage
Houses Located in Foreshore Regions

eg. 10% increase in wind speed by 2050 will increase damages by $178 million, and $484 million by 2100
... Climate Impact on Cyclone Damage
Regional Losses in North Queensland

Large Increase in Damages

Regional Damage \(L_{c(1,T)} \) ($ million)

Wind Speed Increase

Time
1-10 years
1-25 years
1-50 years
2017

Large Increase in Damages
Cost-Effectiveness of Adaptation Measures

(Stewart and Li 2009)

- Many adaptation measures
 - e.g. Strengthen old (pre-1980 construction) to new standards
 - only for houses located in foreshore regions as these are most vulnerable to cyclones

- Cost-Benefit Assessment
 - Cost = costs of retrofit (C_{st})
 - Benefit = reduced damages due to reduced building vulnerability
 - Net Benefit = Benefits – Costs
 - Variables ???
 - C_{st} = retrofit cost as fn(house value)
 - r = annual rate of retrofit
 - discount rate (= 4%)
 - time period (to 2050)
 - climate change scenario
 - assume 10% increase in wind speed by 2050
Adaptation Strategy
Retrofitting old houses in foreshore region

Adaptation strategy is cost-effective if $C_{st} < 5\%$ or $\$12,000$ per house.
Adaptation strategy will be cost-effective within 8 years if cost of retrofitting is low.
Risks of Infrastructure Deterioration
Effect of CO$_2$ on Reinforcement Corrosion
(Peng and Stewart 2008)

Adaptation measures:
- increase cover
- improve concrete quality
- corrosion inhibitors, coatings, etc.

Probability of Corrosion Damage

Year

cover = 30 mm
w/c = 0.50

Effectiveness? Cost? Benefits?
Centre for Climate Impacts Management (C²IM)
Water Supply Infrastructure

- Prof Garry Willgoose
- Prof George Kuczera

Research strengths in several areas vital for ensuring water supply infrastructure can cope with climate change and variability:
 - Stochastic hydrology
 - Tools for simulating the water cycle in urban system from allotment to regional scales
 - Support for decision making using multi-criterion optimization with explicit recognition of uncertainty
 • tools for selecting robust decisions
Stochastic hydrology fits probability models to climate data to enable sampling of events more extreme than in historic or downscaled record → Essential in drought security assessment

We are only now starting to understand multi-decadal natural climate variability (different to climate change)
… Centre for Climate Impacts Management

Water Infrastructure Simulation Models

- **WATHNET**
 - Regional scale simulation (e.g., Sydney, Melbourne, SEQ)
 - Uses linear programming to deal with network complexity
 - Extensive scripting to express rules and constraints

- **urbanCycle**
 - Allotment to suburb scale
 - Joint simulation of water supply, stormwater and wastewater
Impact and Adaptation Assessment - Probabilistic Risk Assessment –

- Centre for Infrastructure Performance and Reliability
- Centre for Climate Impacts Management

- Frameworks to assess risks, costs and benefits
 - helps decide which infrastructure needs upgrading, and is it cost-effective?
 - maximise efficient use of limited resources

- What are the BENEFITS of adaptation measures?
 - how effective are they in reducing ‘risk’?
Further Reading

Thank you!

mark.stewart@newcastle.edu.au
Centre for Infrastructure Performance and Reliability
School of Engineering
The University of Newcastle, Australia