Rapid Assessment of the Impacts of Climate Change (RAICCC)

Adam Fenech

2010 Climate Adaptation Futures
Gold Coast, Australia

June 30, 2010
Rapid Assessment of the Impacts of Climate Change (RAICCC)

Step 1
Build History of Climate Extremes
Observational Data

Step 2
Evaluate and Select Climate Model
Model Output

Step 3
Build Future of Climate Extremes

Step 4
Climate Change Environmental Predictions
10 eco-sectors

Step 5
Relative Risk Assessment
Impacts of Climate Change

- Fast
- Simple (Transferable)
- Builds on Existing Tools
- Linked to Scientific Literature on Impacts
- Presents a Relative Risk Assessment
Step 1
Building a History of Climate Extremes

Getting warmer
\[\uparrow 1.54^\circ C \]

Getting dryer
\[\downarrow 0.55 \text{ mm/day (20 cm/year)} \]
Past Extremes at Halton Region

- Raining/snowing less often ↓7% per year
- Raining/snowing less intensely ↓0.4 mm/episode (primarily the Summer as increases in Spring)
- More dog days of summer ↑ ~6.5 days per year
- Less brutal cold days ↓ ~8 days per year
- Growing season increased ↑ over 3 weeks
- Frost season decreased ↓ ~ 5 days
Step 2 – Selecting a Climate Model

Parameter: Air Temperature - Mean (2m) Anom, Units: °C
Target: Longitude: -79.29, Latitude: 43.67
Validating Models

Observed vs. Modelled
Halton Region 1980 to 1999

- Too warm
- Too cold
- Too wet
- Too dry

Perfect Model
Ensemble
INMCM3
CSIROMk3
CGCM3
Step 3 – Building a Future of Climate Extremes

- Will rain/snow more often \(\uparrow \) 5% by 2100
- Will rain/snow more intensely \(\uparrow \) 0.71 mm/event by 2100
- More dog days of summer \(\uparrow \) 32 days/year by 2100
- Less brutal cold days \(\downarrow \) 17 days/year by 2100
- Growing season \(\uparrow \) Almost a month longer
- Frost season \(\downarrow \) Almost a month shorter
Observed ↑ 10 days

Projected ↑ 18 days by 2100

“Oh, no! Golf-ball-sized hail!”

Past and Future
Potential Premium Golf Days Due to Climate Change
Halton Region 1980 to 2100
Observed ➤ 11 days

Projected ➤ 36 days by 2100
Step 5
Relative Risk/Benefit Assessment of Climate Change

<table>
<thead>
<tr>
<th>Change (Δ) in Risk (−)/Benefit (+)</th>
<th>Measured as % change</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High Δ in Risk/Benefit (≥40)</td>
<td>Biodiversity (−)</td>
<td>Forests (−)</td>
<td>Energy (Cooling) (−)</td>
<td>Agriculture (+)</td>
<td>Built Environment (+)</td>
</tr>
<tr>
<td>High Δ in Risk/Benefit (30 to 40)</td>
<td>Energy (Heating) (−)</td>
<td>Human Health (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Δ in Risk/Benefit (20 to 30)</td>
<td>Water Quality (−)</td>
<td>Fisheries (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Δ in Risk/Benefit (10 to 20)</td>
<td>Transportation (−)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Low Δ in Risk/Benefit (0 to 10)</td>
<td>Very High Model Uncertainty (≥2.0)</td>
<td>High Model Uncertainty (1.51 to 2.0)</td>
<td>Medium Model Uncertainty (1.1 to 1.5)</td>
<td>Low Model Uncertainty (0.51 to 1.0)</td>
<td>Very Low Model Uncertainty (0 to 0.5)</td>
</tr>
</tbody>
</table>

Model Uncertainty measured by Confidence Index (CI)
Conclusions

For Halton Region
• climate change is an important issue to Halton, and its importance will increase over the 21st century
• the built environment, agriculture and tourism are those eco-sectors at Halton Region identified for further study

For RAICCC
• Provides climate change information to local communities
• Next steps include identifying adaptation options and then the cost-effectiveness of each option
• Applying at Biosphere Reserves in Canada, and elsewhere