Predicting water quality and ecological responses

Media type: 
Fiona Dyer
Sondoss El Sawah
Paloma Lucena-Moya
Evan Harrison
Barry Croke
Alica Tschierschke
Rachael Griffiths
Renee Brawata
Jarrod Kath
Trefor Reynoldson
Tony Jakeman
University of Canberra
The Australian National University


Changes to climate are predicted to have effects on freshwater streams. Stream flows are likely to change, with implications for freshwater ecosystems and water quality. Other stressors such as population growth, community preferences and management policies can be expected to interact in various ways with climate change and stream flows, and outcomes for freshwater ecosystems and water quality are uncertain. Managers of freshwater ecosystems and water supplies could benefit from being able to predict the scales of likely changes.

This project has developed and applied a linked modelling framework to assess climate change impacts on water quality regimes and ecological responses. The framework is designed to inform water planning and climate adaptation activities. It integrates quantitative tools, and predicts relationships between future climate, human activities, water quality and ecology, thereby filling a gap left by the considerable research effort so far invested in predicting stream flows.

The modelling framework allows managers to explore potential changes in the water quality and ecology of freshwater systems in response to plausible scenarios for climate change and management adaptations. Although set up for the Upper Murrumbidgee River catchment in southern NSW and ACT, the framework was planned to be transferable to other regions where suitable data are available. The approach and learning from the project appear to have the potential to be broadly applicable.

We selected six climate scenarios representing minor, moderate and major changes in flow characteristics for 1oC and 2oC temperature increases. These were combined with four plausible alternative management adaptations that might be used to modify water supply, urban water demand and stream flow regimes in the Upper Murrumbidgee catchment.

The Bayesian Network (BN) model structure we used was developed using both a ‘top down’ and ‘bottom up’ approach. From analyses combined with expert advice, we identified the causal structure linking climate variables to stream flow, water quality attributes, land management and ecological responses (top down). The ‘bottom up’ approach focused on key ecological outcomes and key drivers, and helped produce efficient models. The result was six models for macroinvertebrates, and one for fish. In the macroinvertebrate BN models, nodes were discretised using statistical/empirical derived thresholds using new techniques.

The framework made it possible to explore how ecological communities respond to changes in climate and management activities. Particularly, we focused on the effects of water quality and quantity on ecological responses. The models showed a strong regional response reflecting differences across 18 regions in the catchment. In two regions the management alternatives were predicted to have stronger effects than climate change. In three other regions the predicted response to climate change was stronger. Analyses of water quality suggested minor changes in the probability of water quality exceeding thresholds designed to protect aquatic ecosystems.

The ‘bottom up’ approach limited the framework’s transferability by being specific to the Upper Murrumbidgee catchment data. Indeed, to meet stakeholder questions models need to be specifically tailored. Therefore the report proposes a general model-building framework for transferring the approach, rather than the models, to other regions. 

Please cite this report as:
Dyer, FJ, El Sawah, S, Lucena-Moya, P, Harrison, ET, Croke, BFW, Tschierschke, A, Griffiths, R, Brawata, RL, Kath, J, Reynoldson, T & Jakeman, AJ 2013, Predicting water quality and ecological responses, National Climate Change Adaptation Research Facility, Gold Coast, 293 pp.

Visit the research project page

This photo is © Fiona Dyer