Assessing Total Climate Risk: A Toolbox for Governments

Reto Schnarwiler, Head Public Sector
2010 International Climate Change Adaptation Conference, Australia
Burning questions

- What is the potential climate-related loss to our economies and societies over the coming decades?
- How much of that loss can we avert, with what measures?
- What investment will be required to fund those measures?
- And will the benefits of that investment outweigh the costs?
The working group studied eight regions with diverse climate hazards.
The economic value at risk is comprised of two components: economic growth and climate change.

Expected loss from exposure to climate

Extreme climate scenario, USD millions

- Potential impact from economic growth: 56
- Potential impact from change in climate: 23
- Total expected loss: 96

Example City of Hull, UK

Change: +71%
Managing total climate risk requires a cost-effective adaptation portfolio.
Adaptation measures were prioritized according to their costs and benefits.

- Benefits include the loss averted and additional revenues (if applicable).
- Costs include capital and operating expenses as well as potential operating savings generated – and therefore can be negative.

Diagram Explanation:

- Measures below the 0 line are beneficial also in terms of cost reduction.
- Actions below ratio line on the y axis are defined as cost effective.
- Loss averted dollars.
- Reduction of the expected loss by implementing the measure.

Notes:

- Costs and benefits calculated using existing practices and costs.
- Cost per unit of benefit is a NPV calculation discounted at local rates.
The initial portfolio of responses cost-effectively averts much of the expected losses.

Example city of Hull, UK:

- Measures below this line have net economic benefits.
- ~65% of total expected loss can be averted cost-effectively.
The adaptation cost / benefit curve for Maharashtra, India

1 Estimated present value out to 2030 at 2009 dollars
Global overview: Expected Loss averted by adaptation measures

Percent of expected loss (high climate change scenario), 2030¹

100% = total expected loss

<table>
<thead>
<tr>
<th>Country</th>
<th>Remaining loss</th>
<th>Non-cost-effective measures, CB>1</th>
<th>Cost-effective measures, CB<1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mali</td>
<td>100</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Guyana</td>
<td>68</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>UK</td>
<td>65</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Samoa</td>
<td>53</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>China²</td>
<td>48</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>India</td>
<td>47</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>Tanzania</td>
<td>43</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>Florida</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

¹ Based upon select regions analyzed within the countries (e.g., Mopti, Mali; Georgetown, Guyana, UK; North and Northeast China; Maharashtra, India; Central regions of Tanzania; Southeast Florida, U.S.)
² Based upon moderate scenario data and analysis
The Main Functions of Risk Transfer

Without risk transfer
- Cost equals economic damage from hazard events (loss)

With risk transfer
- Cost equals premiums (plus deductible in case of loss)

Risk transfer

Benefits
- Caps losses, protects livelihood from catastrophic events
- Smooths costs, reduces volatility
- Increases willingness to invest
- Provides incentives ("price signals")

Costs
- Expected loss plus markup for production and distribution
Summary

- A tested toolbox for governments
- The framework presented can help societies better understand the climate risk to their economies – and provide vital input into impactful, cost-effective adaptation strategies that boost overall economic development
 - Quantify a location’s total climate risk
 - Select feasible and applicable measures to adapt to the expected risk by using cost-benefit curves
Economics of climate adaptation – a framework for decision-makers

Please find the full study at www.swissre.com/climatechange
Assessing Total Climate Risk: A Toolbox for Governments

Reto Schnarwiler, Head Public Sector
2010 International Climate Change Adaptation Conference, Australia
Appendix: Case study China
Economics of climate adaptation (ECA) study group

Partner consortium:

<table>
<thead>
<tr>
<th>Partner</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Global Environment Facility (GEF)</td>
<td>is a trust fund partnership among 178 countries, international institutions, non-governmental organizations (NGOs), and the private sector</td>
</tr>
<tr>
<td>Climate Works</td>
<td>is a newly formed global philanthropic network organized to win the battle against climate change</td>
</tr>
<tr>
<td>The United Nations Environment Programme (UNEP)</td>
<td>is an international inter-governmental organization established by the General Assembly of the United Nations</td>
</tr>
<tr>
<td>Standard Chartered</td>
<td>operates in many of the world’s fastest growing markets, and derives over 90 per cent of its profits from the emerging trade corridors of Asia, Africa and the Middle East</td>
</tr>
<tr>
<td>Swiss Re</td>
<td>is a leading global reinsurer, was a lead contributor to the research, risk assessment and quantification</td>
</tr>
<tr>
<td>McKinsey & Company</td>
<td>drove the analytical execution and contributed to the fact base</td>
</tr>
<tr>
<td>The Rockefeller Foundation</td>
<td>is a global philanthropic corporation</td>
</tr>
<tr>
<td>The European Commission</td>
<td>is the executive branch of the EU responsible for proposing legislation, implementing decisions, upholding the Union’s treaties,</td>
</tr>
</tbody>
</table>
China has a highly diverse climate

- Highly diverse climate across the country, including tropical climate in the South, as well as sub arctic climate in the far Northeast
- Rainfall volume and pattern varies greatly by region, the farther from coastal, the drier

SOURCE: CIA World Factbook; FAO; IMF
We focused on drought due to its strategic importance to agriculture.

2004-2007 annual average impact of hazards in China

<table>
<thead>
<tr>
<th></th>
<th>Cultivated land affected</th>
<th>People affected</th>
<th>Direct economic loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Million hectare</td>
<td>Millions</td>
<td>USD billions¹</td>
</tr>
<tr>
<td>Drought</td>
<td>21</td>
<td>140</td>
<td>8</td>
</tr>
<tr>
<td>Flood</td>
<td>9</td>
<td>108</td>
<td>10</td>
</tr>
<tr>
<td>Tropical cyclone</td>
<td>3</td>
<td>52</td>
<td>8</td>
</tr>
</tbody>
</table>

¹ 1 USD = RMB 6.8 for all calculations

SOURCE: Yearbook of Meteorological Disasters in China, 2004–07
We analyzed the areas of North and Northeast China – regions most impacted by drought.
Given the uncertainty in future climate prediction, we developed 3 scenarios for climate change.

- PRECIS is a regional circulation model (RCM) developed by Hadley Center of U.K. It simulates daily meteorological conditions at a resolution of 50 km x 50 km in a selected region driven by an emission scenario.

- A2 scenario is an SRES scenario defined by IPCC¹, often referred to as medium-high emission scenario.

- Extreme drought in the report refers to particularly severe drought event that happens once every 30 or 50 years.

2030 scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Today’s Climate</td>
<td>- Assuming the climate remains the same as historical climate conditions.</td>
</tr>
<tr>
<td></td>
<td>- Use PRECIS model’s output based on 1961-90 data for normal drought</td>
</tr>
<tr>
<td></td>
<td>- Use historic condition for extreme drought</td>
</tr>
<tr>
<td>2 “Moderate” Change</td>
<td>- Use the average value of the forecast by PRECIS model under A2 scenario</td>
</tr>
<tr>
<td></td>
<td>- Assume a 50% increase of the severity and the frequency of extreme drought from historic condition</td>
</tr>
<tr>
<td>3 “High” Change</td>
<td>- Use the average value of the driest 10% forecast from PRECIS model under A2 scenario</td>
</tr>
<tr>
<td></td>
<td>- Assume a 100% increase of the severity and the frequency of extreme drought from historic condition</td>
</tr>
</tbody>
</table>

¹ The Intergovernmental Panel on Climate Change

SOURCE: Team analysis
The economic value at risk for each scenario is comprised of two components – economic growth and climate change.

Expected loss from exposure to climate – Combined North and North East China
Moderate climate change scenario, USD billions

- Potential impact from economic growth: 0.8
- Potential impact from change in climate: 2.6
- Total expected loss: 2.6 (103% increase from today's expected loss of 1.3)

2008, Today's expected loss: 1.3
Incremental increase from economic growth; no climate change: 0.8
Incremental increase due to climate change: 0.5
2030, total expected loss: 2.6
Managing total climate risk requires a cost-effective adaptation portfolio.
Adaptation measures were prioritized according to their costs and benefits.

- Benefits include the loss averted and additional revenues (if applicable)
- Costs include capital and operating expenses as well as potential operating savings generated – and therefore can be negative

Cost per unit of benefit ratio

- Measures below 0 line are beneficial also in terms of cost reduction
- Actions below ratio line on the y axis are defined as cost effective

Loss averted Dollars

- Reduction of the expected loss by implementing the measure

- Costs and benefits calculated using existing practices and costs
- Cost per unit of benefit is a NPV calculation discounted at local rates
The initial portfolio of responses cost-effectively averts much (~50%) of the expected losses.

Example China:
Global overview: Losses by GDP impact

1 Based upon select regions analyzed within the countries (e.g., Mopti, Mali; Georgetown, Guyana Hull, UK; North and Northeast China; Maharashtra, India; Central regions of Tanzania; Southeast Florida, U.S.)
Basic Copyright Notice & Disclaimer for Swiss Re Presentations provided to External Parties

©2010 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivatives of this presentation without the prior written permission of Swiss Re.

This presentation is for information purposes only and contains non-binding indications as well as personal judgment. It does not contain any recommendation, advice, solicitation, offer or commitment to effect any transaction or to conclude any legal act. Any opinions or views expressed are of the author and do not necessarily represent those of Swiss Re. Swiss Re makes no warranties or representations as to this presentation’s accuracy, completeness, timeliness or suitability for a particular purpose. Anyone shall at its own risk interpret and employ this presentation without relying on it in isolation.

In no event will Swiss Re or one of its affiliates be liable for any loss or damages of any kind, including any direct, indirect or consequential damages, arising out of or in connection with the use of this presentation.