Will diversity assist adaptability?

Renae Tobin and Stephen Sutton
Fishing and Fisheries Research Centre
James Cook University
AUSTRALIA
Background

- Traditional fisheries management
 - Few, larger operators
 - Targeting one or a few species
 - Minimise effort shift between fisheries / areas

- Managing for adaptation
 - Diverse operation types
 - Targeting and marketing multiple species
 - Ability to shift effort between fisheries / areas
How does diversity assist adaptation?

- Case study:
 Queensland east-coast inshore finfish fishery (Australia)
 - “The Inshore Fishery”
How does diversity assist adaptation?

- **Case study:**

 Queensland east-coast inshore finfish fishery (Australia)

 - “The Inshore Fishery”
 - Inshore habitats
 - bays, creeks, estuaries
 - Production driven by rainfall and freshwater flow
 - variable year-to-year
How does diversity assist adaptation?

- **Case study:**

 Queensland east-coast inshore finfish fishery (Australia)

 - “The Inshore Fishery”

 - Commercial set net (~200 active vessels)
How does diversity assist adaptation?

• Case study:

Queensland east-coast inshore finfish fishery (Australia)
 – “The Inshore Fishery”
 – Commercial set net (~200 active vessels)
 – Charter line (230 vessels)
 – Multiple species
 – Main = barramundi
Case study

How does diversity assist adaptation?

- **Case study:**

 Queensland east-coast inshore finfish fishery (Australia)

 - “The Inshore Fishery”
 - Commercial net (~200 active vessels)
 - Charter line (230 vessels)
 - **Socio-economic indicators**

 - Monitor success of fisheries management goals

 - Including “DIVERSITY”
Case study

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishing range</td>
<td>Furthest = 1,450 km</td>
</tr>
<tr>
<td></td>
<td>45% > 100 km</td>
</tr>
<tr>
<td>Target sp</td>
<td>40% Barramundi primary</td>
</tr>
<tr>
<td></td>
<td>Multiple secondary</td>
</tr>
<tr>
<td># fisheries</td>
<td>1 to 6;</td>
</tr>
<tr>
<td></td>
<td>7% solely dependent on inshore fishery</td>
</tr>
<tr>
<td>Experience</td>
<td>Average 28 years</td>
</tr>
</tbody>
</table>
Case study

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Commercial</th>
<th>Charter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishing range</td>
<td>Furthest = 1,450 km 45% > 100 km</td>
<td>Furthest = 1,705 km 30% > 100 km</td>
</tr>
<tr>
<td>Target sp</td>
<td>40% Barramundi primary Multiple secondary</td>
<td>75% Barramundi primary 90% Barramundi as top 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very few secondary</td>
</tr>
<tr>
<td># fisheries</td>
<td>1 to 6; 7% solely inshore</td>
<td>1 to 2; 70% dependent on inshore</td>
</tr>
<tr>
<td>Experience</td>
<td>Average 28 years</td>
<td>8 yrs</td>
</tr>
</tbody>
</table>

- **Diverse**
- **Specialised**
Hypothetical scenario:
- Focusing on barramundi
- Increased water temperatures
- Sporadic rainfall in the north
 - no freshwater flow
- Barramundi move south
Hypothetical scenario:
- Focusing on barramundi
- Increased water temperatures
- Sporadic rainfall in the north
 - no freshwater flow
- Barramundi move south
- Disappear from Cairns north
- How do these fisheries react?
Hypothetical scenario:

- How do these fisheries react?

 Target species moves

 Follow fish
 - Yes
 - No

 Change species
 - Yes
 - No

 Change fisheries
 - Yes
 - No

 Leave the fishery
 - Yes
 - No
Commercial fishers

Hypothetical Target species moves

Follow fish
Yes No
Commercial fishers

Target species moves

Follow fish

Yes

No

45% range > 100 km

12% range > 500 km
Commercial fishers

Target species moves

Follow fish

Yes No

45% range >100 km
12% range >500 km
Commercial fishers

Target species moves

Follow fish
- Yes (45%)
- No (55%)

Change species
- Yes
- No

All target and market multiple species
Whiting, bream, etc...
40% barramundi primary target
Commercial fishers

93% operate in multiple fisheries

Target species moves

Follow fish
- Yes 45%
- No 55%

Change species
- Yes 60%
- No 40%

Change fisheries
- Yes
- No
Charter fishers

Target species moves

Follow fish

Yes

No
Charter fishers

Target species moves

Follow fish

- Yes
- No

30% range >100 km
20% range >500 km
Hypothetical

Charter fishers

Target species moves
Follow fish: Yes
No

30% range >100 km
20% range >500 km
Charter fishers

Target species moves

Follow fish
- Yes: 30%
- No: 70%

Change species
- Yes
- No

25% have other main target...
75% barramundi is main target
90% barramundi top 3
Charter fishers

Target species moves

Follow fish
- Yes: 30%
- No: 70%

Change species
- Yes: 25%
- No: 75%

Change fisheries
- Yes: 30% access other fisheries
- No: 70% dependent on inshore
 Highly specialised vessels
Hypothetical

Charter fishers

Target species moves

Follow fish
Yes 30%
No 70%

Change species
Yes 35%
No 65%

Change fisheries
Yes 30%
No 70%

Leave fishery
Yes
No

Young (~40 years)
High education
Short time in fishery
Other experience
Other sources of HH income

SOCIAL RESILIENCE
• Charter sector unlikely to adapt
 – unable to restructure
 – But *socially* resilient
• To keep a fishery going, need *socio-ecological* resilience
 – Commercial inshore fishers – yes
 • Longevity of experience
 • Variable environment
 • Learn from them?
 – Diversity
 • Harder to manage – issues of effort shift
 • Need to find way to:
 – keep *diversity* = *adaptive capacity*
 – without compromising sustainability

Conclusion
Questions?

Thanks to all the Queensland fishers who put up with some very long surveys!
FRDC funded the baseline data project
And thanks to Andrew for many thoughtful discussions.

renae.tobin@jcu.edu.au
stephen.sutton@jcu.edu.au