A risk management framework for assessing climate change impacts, adaptation and vulnerability

Grant Stone, David Cobon, David McRae and colleagues
Queensland Climate Change Centre of Excellence
Purpose of Risk Management Framework Study

- climate change impacts are complex (McKeon et al. 2009)
- need for climate change assessment for grazing industry
- means of engagement with industry
- adaptation strategies need to begin now
- vulnerability assessment feedback can inform policy
- target research and development where knowledge is limited
- identifies adaptation short-term or restructure in long-term?
The Risk Management Matrix approach

<table>
<thead>
<tr>
<th>Climate Change Factors</th>
<th>Pasture</th>
<th>Water</th>
<th>Animals</th>
<th>$</th>
<th>Graziers and Regional Communities</th>
<th>State and Commonwealth Government</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ ↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature ↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainfall ↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction ↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Climatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variability ↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impacts of climate change

<table>
<thead>
<tr>
<th>Feature of climate change</th>
<th>Pasture Growth</th>
<th>Tree-Grass Balance for Grazing</th>
<th>Surface Cover</th>
<th>Pasture Nutrition</th>
<th>Surface Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elevated CO₂</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease in pasture growth (References 2a, 6a, 16a, 17h, 19b, 20a, 21a, 24a, 26a, 31a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Increased evaporation</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in pasture nutrition - Due to increased evaporation of nitrogen, but less during the growing season</td>
<td>Reduced in pasture nutrition (References 2a, 6a, 7a, 8a, 9a, 10a, 16a, 17a, 25a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Higher minimum temperature</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased pasture nutrition - Only (References 19b, 26a, 27a)</td>
<td>Reduced in pasture nutrition (References 2a, 6a, 7a, 8a, 9a, 10a, 16a, 17a, 25a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Less frost</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease in pasture growth (References 2a, 6a, 16a, 17h, 19b, 20a, 21a, 24a, 26a, 31a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Higher maximum temperature</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease in pasture growth (References 2a, 6a, 16a, 17h, 19b, 20a, 21a, 24a, 26a, 31a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. More days over 35°C</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease in pasture growth (References 2a, 6a, 16a, 17h, 19b, 20a, 21a, 24a, 26a, 31a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptation Responses and Vulnerability

<table>
<thead>
<tr>
<th>Feature of climate change</th>
<th>Pasture Growth</th>
<th>Tree-Grass Balance for Grazing</th>
<th>Surface Cover</th>
<th>Pasture Nutrition</th>
<th>Surface Water Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elevated CO2</td>
<td>Maintain cattle/sheep for pasture recovery; Monitor C3/C4 ratio (Reference: 5a, 9a, 18a, 20a, 22a, 23a, 27a, 32a, 31a)</td>
<td>Manage use of fire, chemical, animal controls (M) (Reference: 17h, 18a, 20a, 22a, 27a, 31a)</td>
<td>Manage cattle/sheep/fire to maintain existing cover; Maintain cattle/sheep for pasture recovery; (Reference: 9a, 23a, 27a, 32a)</td>
<td>Use supplements (N, P, energy) and rumen modifiers; Use early season growth and destock sooner; Lengthen recovery time of pastures; Use feedlots to finish animals; Use fertilisers and improved pastures (L) (Reference: 5a, 18a, 19b)</td>
<td>Partially offsets rainfall deficit</td>
</tr>
</tbody>
</table>

Decrease cattle/sheep in the warm/dry season to maintain pastures, maintain groundcover to preserve soil moisture, tree strips to reduce landscape evaporation (M) (Reference: 9a, 17h, 18a, 20a, 22a, 23a, 27a)

- Increase depth of existing dams; Fence dams and use controlled waters where possible (H) (Reference: 9a, 14a, 20a, 23a)
- Increase water storage facilities (M) (Reference: 9a, 14a, 20a, 23a)
- Increase volume and number of water storage facilities; Increase depth of existing dams; Fence dams and use controlled waters where possible (H) (Reference: 9a, 14a, 20a, 23a)
Preparing Risk Statements

Risk statements derived from risk analysis can identify:
- the nature and level of risk
- the need for, and timing of the response and
- the nature of useful adaptation responses

To achieve this:
- identify the areas with the greatest vulnerability
- prepare a risk statement for one aspect

For example:
- The extreme risk to the grains industry of more and prolonged high temperature events could lead to lost viability of grain enterprises….
- This level of risk requires an immediate response from….
- This risk can potentially be mitigated through….
Risk Management Matrix - a summary

Aim: to assess and report indications of risk (i.e. impacts, adaptation and vulnerability)

• with the involvement of industry and regional participants, this tool was developed to help regional stakeholders plan their adaptation strategies to potential climate change impacts

• the tool uses a risk management approach and can be adapted for use in any industry or sector

• a key feature is the participatory nature of the process used to tailoring the tool for each industry
Informing Industry of Risk Management Matrix approach:

• QCCCE in conjunction with Agri-Science Queensland (Department of Employment, Economic Development and Innovation; DEEDI)

• conduct five Industry briefings - Brisbane:
 - horticulture/forestry, grains/cropping, fisheries/aquaculture, beef/sheep/dairy, intensive livestock (pigs/poultry)

• conduct 10 regional briefings - regional Qld
 • Toowoomba, Roma, Longreach, Mt Isa, Cairns/Tableland, Townsville, Mackay, Rockhampton, Emerald, Bundaberg

• develop 13 regional fact sheets:
 - impacts, adaptations, historical and projected climate data
 – Industry focus
Industry and Regional Briefings

Industry briefings to date:
• pilot study: western Queensland (Grazing industry; 2008)
• horticulture/forestry (fruit & vegetable, forestry, turf)
• grains/cropping (grains, sugar cane, cotton)

Evaluation:
• 70% of participants found briefings useful in addressing climate change issues and understood the Risk Management Matrix approach
• 80% of participants recognised potential benefits of the Risk Management Matrix as an adaptation tool
• 70% of participants plan to use the Risk Management Matrix

Future:
ClimateQ funding rollout with training activities
ClimateQ
Helping primary producers adapt to climate change

- partnership with Agri-Science Queensland (DEEDI)
- $3.2 million to provide information and tools to help primary producers in Queensland manage climate change risks.
- provide regional level climate change projections to primary producers, peak industry groups and natural resource management (NRM) groups.
- provide primary producers with access to the tools and information they need to manage risks from a changing climate (e.g. Risk Management Matrix).
- deliver workshops to industry groups and NRM groups to build knowledge and skills in applying risk management tools and adaptation options.
- establish a Queensland network of scientists, farmers and agribusiness to continually evaluate the relevance and effectiveness of risk management tools and adaptation options.
Summary

The Risk Management Framework is a useful tool to:

• assess climate change impacts and adaptation
• identify areas and regions of high risk (i.e. vulnerability)
• link with bio-economic modelling
• be used for other regions and industries (ClimateQ)
• enhance understanding and facilitate education

Source Publication: