Water Pipe Failure Predictions under Different Climate Scenarios

Water For a Healthy Country Flagship

F. Boulaire, S. Gould, D. Beale, J. Kodikara, S. Burn and D. Marlow
Presented by Scott Gould
July 2010
Presentation outline

• Background
 • Pipe failure modelling
 • Purpose of modelling
 • Factors which influence failure

• Enhanced model for predicting pipe failures
 • Does the enhanced model improve predictions?
 • Validation of model at cohort level, comparing
 • Predictions using the original model
 • Predictions with enhanced model (inclusion of climate factors)

• Quantifying the impact of climate change
 • Predictions on number of failures under three different scenarios
Background
Failure modelling

• Water asset managers use simulation tools to help make maintenance decisions

• Tools are based on failure predictions models
 • Physical
 • Statistical
 • Physical-probabilistic

Water Pipe Failure Predictions under Different Climate Scenarios
Causes of failures

• Failures are caused by a range of inter-related factors

Water Pipe Failure Predictions under Different Climate Scenarios

Broader Environment
 - Weather
 - Rainfall, Evaporation...
 - Season
 - Extreme events
 - Drought, Flood

Surrounding Environment
 - Soil
 - Traffic
 - Coverage

Pipe Attributes
 - Material
 - Diameter
 - Installation Year
 - Pressure
Failure number variation

- Original model allows for Pipe Attributes and Surrounding Environment to be included

- Enhanced model also includes Broader environment (climate).
Model Validation
Can the model detect most at risk pipes?

- ROC (receiver operating characteristic) curves
 - x-axis: relative length of pipe ranked by decreasing predicted number of failures
 - y-axis: cumulative percentage of observed failures
 - Perfect prediction corresponds to an inverted L curve
 - Random guess corresponds to the diagonal line

- Area Under Curve
 - Measure of quality of predictions
 - Provides a way of comparing models

```
Water Pipe Failure Predictions under Different Climate Scenarios

Original model (Area = 0.708)
Enhanced model (Area = 0.716)
```
Are the yearly variations better captured?

Observed vs. Predicted Number of Failures

- Enhanced model captures some yearly variations
- Overall predictions
 - Enhanced model under predicted by 7%
 - Original model under predicted by 19%
Long term predictions
2001 - 2100
Predictions under various climate scenarios

- Without the inclusion of climate factors
 - Original model

- Using current climate conditions
 - Enhanced model assuming current average conditions continue without change

- Using projections from the A2 climate change scenario
 - Enhanced model using data from the CSIRO 3.5mk model
Predictions on number of failures 2001-2100

Water Pipe Failure Predictions under Different Climate Scenarios
At risk cohorts

- Asset managers look at the most at risk cohorts when budgeting
Cost estimations

• Different types of costs associated with failures
 • Repair costs depending on
 • Type of repair or replacement
 • Location of pipe
 • Diameter
 • Social costs (depending on location of pipe and time of day)
 • Penalty costs (depending on outage length)

• A2 scenario costs are
 • overall 5% higher than when compared to a scenario of no climate change
 • with peaks up to 20% in some years

• Other climate change scenarios are expected to show more dramatic differences
Conclusion

• **Enhanced failure prediction model**
 • Assess long term performance of the networks
 • Determine the direct economic cost of various climate change scenarios on network maintenance

• **Identify at risk pipe cohorts**
 • Optimising maintenance
 • Supporting management strategies.

• **Failure number variation**
 • Identify potential peaks in failure numbers
 • Supporting advanced planning to reduce stress on resources (budgets and labour)
Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176
Email: Enquiries@csiro.au Web: www.csiro.au