Adapting to climate change in broad-acre irrigated farming systems

Don Gaydon
Farming Systems Researcher
June 2010
Case Study - The Irrigated Riverina

- significant permanent plantings – vineyards, citrus, stone fruit (on ‘high security’ irrigation water allocations)
- This talk focuses on broad-acre irrigators – rice, cereals, oilseeds, maize (on ‘low security’ water)

irrigation water allocation priorities:

Towns → Stock → Permanent Plantings → Broad-acre → Environment
Case Study - The Irrigated Riverina

- significant permanent plantings – vineyards, citrus, stone fruit (on ‘high security’ irrigation water allocations)
- This talk focuses on broad-acre irrigators – rice, cereals, oilseeds, maize (on ‘low security’ water)

- irrigation water allocation priorities:
 - Towns → Stock → Environment → Permanent Plantings → Broad-acre

 ...since mid 1990’s (NSW Gov Environmental Flow Legislation)
Historical trends: broad-acre water allocations

So being at the bottom of the water pecking-order, combined with the effects of climate change the last 15 years

Irrigation water allocations (percentage of licensed quota) for Murrumbidgee Irrigation Area, 1980/81 – 2009/10 seasons. The trend of 100%+ allocation extends unbroken back to 1914.

....water allocations available to broad-acre irrigators has experienced a severe downturn and a great increase in variability.....
Future trends – what do the projections say?

Irrigation water supply:

- 16-25% reduction by 2030 and 16-48% reduction by 2100 (IPCC 4th Assessment report) – in **average** annual allocations
- Best estimate of 14% reduction for average irrigation allocations by 2030 – for Murray Catchment (CSIRO Murray Darling Basin Sustainable Yields Report) (most severe estimate: 37% reduction)

Irrigation water demand:

Crops will need more water in future, under current growing methods.
Future trends – what do the projections say?

Broad-acre growers can expect a decreased and more variable future water supply, and must strive to adapt to this new reality.
How can broad-acre irrigators adapt?

Incremental Change

- **buy up *more land*** (or conversely sell up). It is likely that economies of scale will be required to remain viable in a future with less irrigation water and hotter climate.

- **Re-assess basic agronomy** – potentially change crop mixes (species), varieties, planting dates, fertiliser regimes, irrigation regimes

- They will also learn and **implement practices of dryland Australian farmers** (stubble retention, fallowing), because in future they are unlikely to be purely irrigated businesses like they have been in the past.

Go for **transformational change**:

- sell water rights to government, go totally dryland
- or invest in high-efficiency irrigation equipment (drippers, lateral moves) and aim for high-value crops (vegetables etc)
- relocate somewhere with more reliable water supplies?
How can broad-acre irrigators adapt?

The first critical element is to recognise the implications of changing from a *land-limited* production system to a *water-limited* production system.

- **100% water**: Fully-irrigate, aim for maximum production from each paddock
- **< 100% water**: Partially-irrigate a larger section? Reduce inputs?

Still try to maximise production in irrigated area

Aim for sub-optimal production in irrigated paddocks, but *optimal whole-farm performance*.
How can broad-acre irrigators adapt?

- **Example Case study farm – Golgeldrie, NSW Riverina**
 - Irrigated barley, soybeans, rice
 - 600 ha, 1783 Ml licensed allocation

 - **Scenarios considered using APSIM**
 - Historical management (barley area = 155ha; soybean area = 66ha)
 - Barley-soybean rotation, fully irrigated, clear all stubbles
 - Adaptation 1 (barley area = 162ha; soybean area = 73ha)
 - Barley-soybean rotation, increase barley row-spacing from 220-400mm, retain barley stubble through soybean
 - Adaptation 2 (barley area = 264ha; soybean area = 86ha)
 - As per Adaptation 1, but reduce inputs on barley (aim for 3t crop rather than 6t), more water available for soybean
 - Adaptation 3 (barley area = 358ha; soybean area = 91ha)
 - As per Adaptation 2, but rainfall-based sowing rule for barley rather than ‘watering-up’

For this example, we simulated 53 years production (using APSIM model) – assuming annual allocation of 50%
How can broad-acre irrigators adapt?

- The adaptations with decreased inputs had lower gross margins (GMs) in each paddock.

BUT, because more area was planted in those adaptations, the whole-farm GM was increased.
How can broad-acre irrigators adapt?

Whole-farm-scale analysis: WUE considerations
Conclusions

The biggest future challenge will be making the best use of WATER.

The broad-acre irrigation industry will be faced with years of good production, and years of limited production. A big challenge for the industry is handling this variability and staying viable in the ‘low’ years

When production is water-limited, lose the idea that you need to maximise production from individual paddocks – **optimal farm performance** in irrigated systems will often be achieved from **sub-optimal paddock performance** and ‘spreading the water’ when available land is in abundance.

Inherent flexibility will still be critical, because changing commodity prices/cost structures, hence optimal crop mixes and irrigation/fertilisation strategies will vary (subject of current CSIRO/industry-funded research)
CSIRO Sustainable Ecosystems
Don Gaydon
Farming Systems Researcher

Phone: +61 7 3214 2271
Email: don.gaydon@csiro.au

Contact Us
Phone: 1300 363 400 or +61 3 9545 2176
Email: Enquiries@csiro.au Web: www.csiro.au